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Quantization of Strongly Interacting Fields

V. Dzhunushaliev1 and D. Singleton2

Received June 10, 1998

While perturbative techniques work extremely well for weakly interacting field
theories (e.g., QED), they are not useful when studying strongly interacting field
theories (e.g., QCD at low energies). In this paper we review Heisenberg’ s idea
about quantizing strongly interacting nonlinear fields, and suggest an approximate
method of solving the infinite set of Tamm±Dankoff equations. We then apply
this procedure to an infinite-energy, classical flux-tube-like solution of SU(2)
Yang±Mills theory and show that this quantization procedure ameliorates some
of the bad behavior of the classical solution. We also discuss the possible
application of this quantization procedure to a recently proposed strongly
interacting phonon model of high-Tc superconductors.

1. INTRODUCTION

In ref. 1 a string model of high-Tc superconductivity was suggested. This

model is based on the proposal that phonons have a strong self-interaction. In

this case a flux tube filled with phonons appears to form between the Cooper

electrons in a manner analogous to QCD, where it is often postulated that

the strong interaction of the theory leads to the formation of confining flux
tubes between quarks. Just as in QCD, where the formation of such flux

tubes leads to a strong binding of the quarks up to a very high temperature

when a deconfining phase sets in, so, too, in the strongly interacting phonon

picture the formation of such flux tubes is conjectured to raise the temperature

at which the Cooper pairing is broken. The possibility of such a strong

interaction between phonons in superconductors was also discussed in ref.
2. Such strongly interacting theories can present a challenge in that it is not
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possible to employ standard perturbation theory techniques (i.e., Feynman

diagrams) to them. Some time ago Heisenberg conceived of the difficulties

in using an expansion in small parameters for strongly interacting quantum
field theories as a result of his investigations into the Dirac equation with

nonlinear terms (the Heisenberg equation; see, for example, refs. 3 and 4).

In these papers he repeatedly underscored that a nonlinear theory with a

strong coupling requires the introduction of another quantization procedure.

To this end he worked out a quantization method for strong nonlinear fields

using the Tamm±Dankoff method. After briefly reviewing Heisenberg’ s ideas,
we apply his quantization method to a classical flux-tube-l ike solution of the

SU(2) Yang±Mills theory to show how this quantization procedure can soften

some of the bad behavior of the classical solution.

2. HEISENBERG QUANTIZATION OF STRONGLY
INTERACTING FIELDS

Heisenberg’ s basic idea proceeds from the fact that the n-point Green’ s

functions must be found from some infinite set of differential equations

derived from the field equations for the field operators. As an example we

present Heisenberg’ s method of quantization for a spinor field with nonlinear
self-interaction.

The basic equation (Heisenberg equation) has the following form:

g m - m c (x) 2 l 2I[ c ( c Å c )] 5 0 (1)

where g m are Dirac matrices; c (x) and c Å are the spinor field and its adjoint,

respectively; I[ c ( c Å c )] 5 c ( c Å c ) or c g 5( c Å g 5 c ) or c g m ( c Å g m c ) or

c g m g 5( c Å g m g 5 c ). The constant l has units of length, and sets the scale for the

strength of the interaction. Heisenberg emphasized that the two-point Green’ s
function G2(x2, x1) in this theory differs strongly from the propagator in a

linear theory. This difference lies in its behavior on the light cone: in the

nonlinear theory G2(x2, x1) oscillates strongly on the light cone, in contrast to

the propagator of the linear theory, which has a d -like singularity. Heisenberg

introduced the t functions as

t (x1x2. . . | y1y2. . .) 5 ^ 0 | T [ c (x1) c (x2). . . c *( y1) c *( y2). . .] | F & (2)

where T is the time-ordering operator; | F & is a state for the system described

by Eq. (1). Equation (2) allows us to establish a one-to-one correspondence
between the system state | F & and the set of functions t . This state can be

defined using the infinite function set of Eq. (2). Applying Heisenberg’ s

equation (1) to (2), we obtain the following infinite system of equations for

various t ’ s:
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l 2 2 g m
(r)

-
- x m

(r)

t (x1 . . . xn | y1 . . . yn)

5 I[ t (x1 . . . xnxr | y1 . . . ynyr)]

1 d (xr 2 y1) t (x1 . . . xr 2 1xr 1 1 . . . xn | y2 . . . yr 2 1 yr 1 1 . . . yn)

1 d (xr 2 y2) t (x1 . . . xr 2 1xr 1 1 . . . xn | y1 y2 . . . yr 2 1yr 1 1 . . . yn) 1 . . . (3)

Equation (3) represents one of an infinite set of coupled equations which

relate various orders (given by the index n) of the t functions to one another. To

make some head way toward solving this infinite set of equations, Heisenberg
employed the Tamm±Dankoff method, whereby he only considered t func-

tions up to a certain order. This effectively turned the infinite set of coupled

equations into a finite set of coupled equations.

The standard Feynman diagram technique of dealing with field theories

via an expansion in terms of a small parameter does not work for strongly

coupled nonlinear fields. Heisenberg used the procedure sketched above to
study the Dirac equation with a nonlinear coupling. From a more recent

perspective it may be interesting to apply the same procedure to nonlinear

bosonic field theories such as QCD in the low-energy limit or the recently

proposed [1] strongly interacting phonon theory of high-Tc superconductors.

In this paper we will apply the Heisenberg method to an infinite-energy,

flux-tube-like solution for classical SU(2) Yang±Mills theory. Under certain
assumptions we find that the unphysical behavior of the classical SU(2)

solution is ª smoothedº out when the Heisenberg technique is applied. The

formation of flux tubes is an important feature of both QCD (a confining

flux tube is thought to form between two quarks) and the strongly interacting

phonon model (a flux tube is thought to form between the Cooper electrons,

binding them at higher temperatures than is possible in the BCS picture).

3. QUANTIZATION OF SU(2) FLUX TUBE SOLUTION

First we begin by discussing briefly the classical flux-tube-like solution

to the SU(2) Yang±Mills theory. The sourceless Yang±Mills equations for
SU(2) are given by

¹ m F a
m n 5 0 (4)

where ¹ m 5 - m 2 igAa
m T a is the covariant derivative; T a is an element of the

group in some representation; F a
m n 5 - m A a

n 2 - n A a
m 1 g e abcA b

m A c
n is the

SU(2) field strength tensor; Aa
m is the SU(2) gauge potential.

To simplify these Yang±Mills equations we make the following cylindri-

cal symmetric ansatz:
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A1
t 5 f ( r ) (5a)

A2
z 5 v( r ) (5b)

A3
w 5 r w( r ) (5c)

Here z, r , w are the standard cylindrical coordinates. Substituting Eqs. (5a)±
(5c) into Eq. (4) yields for the Yang±Mills equations

f 9 1
f 8

r
5 f (v2 1 w2) (6a)

v9 1
v8

r
5 v( 2 f 2 1 w2) (6b)

w9 1
w8

r
2

w

r 2 5 w( 2 f 2 1 v2) (6c)

We further simplify these equations by taking w 5 0, which yields

f 9 1
f 8

r
5 fv2 (7a)

v9 1
v8

r
5 2 vf 2 (7b)

These equations can be solved numerically. When this is done it is found

that the ansatz function f increases linearly, while v is a strongly oscillating
function [5]. The asymptotic behavior of the ansatz functions f, v confirms

these numerical calculations:

f ’ 2 F x 1
cos(2x 2 1 2 f 1)

16x 3 G (8a)

v ’ ! 2
sin(x 2 1 f 1)

x
(8b)

where x 5 r / r 0 is a dimensionless radius, and r 0, f 1 are arc constants. The

linearly increasing potential given by the ansatz f is very suggestive of the

phenomenological linear confining potentials of QCD. This classical solution

has a badly behaved field energy. The energy density for this solution has

the following asymptotic proportionality

% } f 82 1 v 82 1 f 2v 2 ’ const (9)

where Eqs. (8a) and (8b) have been used. Depending on the initial conditions

of the solution the energy density near r 5 0 will be either a hollow (i.e.,
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an energy density less than the asymptotic value) or a hump (i.e., an energy

density greater than the asymptotic value). On account of this and the cylindri-

cal symmetry of this solution we call this the ª stringº solution. The quotation
marks indicate that this is a string from an energetic point of view, not from

the potential (Aa
m ) or field strength (F a

m n ) point of view. The defect in this

solution is made apparent when one calculates its total field energy. To do

this one must integrate the energy density over all space. Equation (9) implies

that this will give an infinite answer. By applying the Heisenberg quantization

method to this system, we find that this undesirable behavior of the classical
solution is lessened. In order to simplify Heisenberg’ s quantization method

to the present nonlinear equations we make the following assumptions:

1. The degrees of freedom relevant for studying this flux-tube-like solu-

tion (both classically and also quantum mechanically) are given entirely by

the two ansatz functions f, v of Eqs. (5a)±(5c). No other degrees of freedom

arise through the quantization process.
2. From Eq. (8a), f is a smoothly varying function for large x, while v

is strongly ocsillating. Thus we take f ( r ) to be almost a classical degree of

freedom, while v ( r ) is treated as a fully quantum mechanical degree of

freedom. Naively one might think that in this way only the behavior of v
would change while f stayed the same. However, since f and v are interrelated
due to the nonlinear nature of the equations of motion we find that both

functions are modified.

To begin using Heisenberg’ s quantization scheme for this Yang±Mills

system we replace the ansatz functions by operators fÃ( r ), vÃ( r ):

fÃ9 1
fÃ8

x
5 fÃvÃ2 (10a)

vÃ9 1
vÃ8

x
5 2 vÃfÃ2 (10b)

Here the prime denotes a derivative with respect to x. Taking into account

assumption (2), we let fÃ® f become just a classical function again, and
replace vÃ2 in Eq. (10a) by its expectation value:

fÃ9 1
f 8

x
5 f ^ v 2 & (11a)

vÃ9 1
vÃ8

x
5 2 vÃf 2 (11b)

Now if we take the expectation value of Eq. (11b) and ignore the coupling

to f on the right-hand side, we would have an equation for determining ^ v & 5
^ 0 | vÃ| 0 & . However, the two nonlinear terms on the right-hand side of Eqs.
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(11a) and (11b) show that a new object, ^ vÃ2 & , enters the picture, so that Eqs.

(11a) and (11b) are not closed. To obtain an equation for ^ v 2 & we act on vÃ2(x)

with the operator

1 d 2

dx2 1
1

x

d

dx 2
This gives

vÃ29 1
1

x
vÃ28 5 2 2vÃ2 f 2 1 2vÃ82 (12)

Taking the expectation value of this equation gives the desired equation

for ^ v 2 & ,

^ v 2 & 9 1
1

x
^ v 2 & 8 5 2 2 ^ v 2 & f 2 1 2 ^ v 82 & (13)

Again this equation is not closed due to the ^ v82 & term. We could again try
to find an equation for ^ v82 & by the same procedure we employed for ^ v 2 & .
This equation would also not be closed. Continuing in this way, we would

find an infinite set of equations. In order to have some hope of handling this

problem we need to make some approximation to cut this process off at some

finite set of equations. We try two different approximations for the ^ v82 & term

and show that both yield similiar large-x behavior that fixes the infinite field
energy of the classical solution. First we assume that ^ v82 & ’ a ^ v 2 & where a
is some constant. This assumption yields the following closed equation set:

^ v 2 & 9 1
1

x
^ v 2 & 8 5 ^ v 2 & (1 2 f 2) (14a)

f 9 1
1

x
f 8 5 f ^ v 2 & (14b)

where we have rescaled the functions as a 2x 2 ® x 2, ^ v 2 & / a ® ^ v 2 & , f / a ®
f. As x ® ` the asymptotic form of the solution becomes

^ v 2 & ’ v 2
0

exp( 2 g x)

! x
(15a)

f ’ f ` 1 f0
exp( 2 g x)

! x
(15b)
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with

f0 5
f ` v 2

0

2(1 2 f 2
` )

, g 5 ! 2(1 2 f 2
` ) (16)

Thus if | f ` # 1, then g . 0 and we find that the quantum effects tend to

modify the bad long-distance behavior of both ansatz functions.

Instead of using the assumption ^ v82 & ’ a ^ v 2 & to close the equations,
we could also have made the assumption that ^ v82 & ’ 6 ^ v 2 & 8. Since ^ v82 & is

positive definite, one picks the 6 sign, so that the right-hand side of this

assumption is also positive definite. Under this assumption the equations

become

^ v 2 & 9 1 1 1

x
7 2 2 ^ v 2 & 8 5 2 2 ^ v 2 & f 2 (17a)

f 9 1
1

x
f 8 5 f ^ v 2 & (17b)

The approximate solution of Eqs. (17a) and (17b) again has the same func-
tional form as Eqs. (15a) and (15b), but now

f0 g 2 5 f ` v 2
0, g 2 6 2 g 5 2 2f 2

` (18)

The second relationship can be written (using the first relationship) as

g 5 7 f ` 1 f ` 1
v 2

0

2f0 2 (19)

Although ^ v82 & ’ 1 ^ v 2 & 8 leads to unphysical exponentially growing solutions,

the assumption ^ v82 & ’ 2 ^ v 2 & 8 leads to exponentially decaying solutions.
Under this latter assumption and the previous assumption ( ^ v82 & ’ a ^ v 2 & ) for

cutting off the equations we find that that the quantum mechanical treatment

of this nonlinear system modifies the bad features of the classical solution.

The asymptotic behavior of v goes from being strongly ocsillating [see Eq.

(8b)] to decaying exponentially, while the asymptotic behavior of f goes from

being linearly increasing [see Eq. (8a)] to also decaying exponentially. If the
asymptotic forms for these ansatz functions are used in the energy density

% of Eq. (9), we find that the field energy is now finite. (To calculate % we

would replace the classical terms v82 and f 2v 2 by the appropriate quantum

operator and take the expectation value. The ^ v82 & would be handled according

to the assumption we used for closing the equations.)

4. DISCUSSION

In this work we have applied Heisenberg’ s ideas about quantizing

strongly interacting nonlinear fields, not to fermionic fields as Heisenberg
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did, but to the nonlinear field equations of an SU(2) Yang±Mills gauge theory.

Although the solution [Eqs. (8)] for the classical equations of motion [Eqs.

(7)] had some interesting features (the linear confining behavior indicated
by the ansatz function f and the flux-tube-like structure of the energy density),

these features also give the classical solution the unphysical feature of having

an infinite field energy. Using Heisenberg’ s quantization procedure on this

system and making some assumptions in order to cut off the infinite equation

set, we found that the quantum effects replaced the bad large-distance classical

behavior of f, v with physical reasonable exponentially decaying behavior.
This results in the field energy of the solution being finite. Now in the small-

x region one can still expect to find the interesting behavior (i.e., the linear

increase of f ) of the classical solution due to asymptotic freedom [6]. In non-

Abelian theories the coupling strength can become small at small distance

scales (i.e., small x) so that the classical solution should be increasingly valid

as x ® 0. Actually in this x ® 0 limit one cannot use the asymptotic form
of f, v of Eqs. (8), but one must investigate the classical equations numerically.

When this is done [5] one again finds that f is approximately linearly increasing

even as x ® 0. The conclusion is that at short distances one has the interesting

features of the classical solution, while at large distances the quantum effects,

as taken into account via Heisenberg’ s method, replace the bad long-distance
behavior of the classical solution with a physically reasonable behavior.

This quantization procedure that we have applied to the SU(2) flux tube

may also be useful in investigating similiar structures in others theories. In

QCD it is suggested that the formation of flux tubes between isolated quarks

is the mechanism responsible for confinement. However, due to the large

coupling strength of QCD the standard perturbative treatment of the quantum
effects of the theory via Feynman diagrams is ruled out. The present method

may be useful for investigating the flux tube structures of QCD. Recently,

a nonlinear, strongly interacting phonon model of high-Tc superconductors was

given [1], where the strong interaction between the phonons was postulated to

lead to the formation of a flux tube between the Cooper electrons. This

allowed the electrons to remain correlated up to much higher temperatures
than is normally found in the BCS model. The quantization technique used

here for the SU(2) Yang±Mills theory may be useful in studying this model.
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